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Abstract

The purpose of this paper is to demonstrate the ability of a cubic equation model to
predict the phase behavior of the carbon dioxide (1) + isopropanol (2) binary system. The model
selected is the cubic General Equation of State — GEOS, coupled with classical van der Waals
mixing rules — two-parameter conventional mixing rule, 2PCMR. One unique set of binary
interaction parameters is used to predict the phase behavior of the system.
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1. Introduction

The carbon (as carbon dioxide, CO2) emissions produced by fossil fuel-
powered plants and energy production facilities account for over 80% of
greenhouse gases (GHGs) [1]. Among the many options for carbon mitigation,
carbon capture and storage (CCS) is an almost essential part and could contribute
approximately 20% to CO2 emission reductions by 2050, as recommended by
International Energy Agency (IEA) [1]. CCS holds great potential in industry and
petroleum refineries given their large CO2 emissions. In addition, there are many
industrial processes that generate rich CO2 gas streams, or in some cases pure
CO2, which could reduce the costs of CCS.

At the same time, carbon dioxide is a non-hazardous and safe substance
used as working fluid for many green products and processes due to its
compatibility with the environment. In particular, the physical properties and
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phase behavior of complex mixtures containing CO: are nowadays associated
with a wide range of applications [2-4].

Recently [5,6], we started to investigate experimentally the effect of the
functional group of different classes of substances on the ability to dissolve
carbon dioxide. We are equally interested in the capability of models to predict
the phase behavior of these systems at high pressures.

Among the mixtures of interest, carbon dioxide + alcohol mixtures at high
pressures are of particular importance in the design, simulation, and optimization
of extraction processes, where alcohols are commonly used as co-solvents [7].

In this study, we focus on the carbon dioxide (1) + isopropanol (2) binary
system. In a previous paper [6], we compared the prediction results by two well-
known cubic equations of state (EoS), namely Soave-Redlich-Kwong (SRK) and
Peng-Robinson (PR), coupled with classical van der Waals mixing rules
(2PCMR). A single set of binary interaction parameters for each EoS, determined
for the carbon dioxide + 2-butanol binary system, was used to model the global
phase behavior of the system.

Here, the global phase behavior of the system was modeled with a general
cubic equation of state (GEOS) [8,9] coupled with classical van der Waals mixing
rules (2PCMR). This cubic equation is a generalized form with four parameters
for all cubic equations of state with two, three, and four parameters. One unique
set of binary interaction parameters determined for the carbon dioxide + 1-
propanol system was used to calculate the critical curves and vapor-liquid
equilibrium diagrams.

2. Modeling

The modeling of phase behavior of this system was made with the GEOS
equation [8,9] coupled with classical van der Waals mixing rules (2PCMR). The
GEOS [8,9] equation of state is:

_RT__ a(T)
V=b (y-d) +c
with the classical van der Waals mixing rules
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with “+” for ci, ¢ > 0 and “—* for ¢;, ¢; < 0. Generally, negative values are
common for the ¢ parameter of pure components.
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The four parameters a, b, ¢, and d for a pure component are expressed by:

R'T? RT,
a(T)=—=p(T.)Q, b=—Q, (5)
R'T’ RT,
c= PZC Q. d= PC Q, (6)
Setting four critical conditions, with «, as the Riedel criterion:
2
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where P, T, V. are the reduced variables and Z_ is the critical compressibility

factor.

The temperature function used is:

A(T)=T" (10)

The GEOS parameters m and a. were estimated by constraining the EoS to
reproduce the experimental vapor pressure and liquid volume on the saturation
curve between the triple point and the critical point [10].

The calculations were made using the software package PHEQ, developed
in our laboratory [11]. The critical curves were calculated using the method
proposed by Heidemann and Khalil [12], with numerical derivatives given by
Stockfleth and Dohrn [13].

Instead of correlating the experimental data, we used a predictive
approach. Thus, the GEOS equation was used in a semi-predictive approach to
obtain a set of binary parameters yielding good results in the binary system carbon
dioxide + 1-propanol (including VLE in the entire temperature range, critical
points, global phase behavior) [14]. The set of binary parameters was calculated
using the ki12—/12 method [15] to obtain the experimental value of the vapor—liquid
critical pressure maximum (CPM) simultaneously with the temperature of the
upper critical endpoint (UCEP). The binary system carbon dioxide + 1-propanol
exhibits a type II phase diagram, according to the classification of van
Konynenburg and Scott [16]. The parameter set (ki = 0.042; /12 = -0.021)
obtained for the mixture containing the position isomer was then used to model
the carbon dioxide (1) + isopropanol (2) system. To our knowledge, there is no
experimental evidence to support the classification into a type of phase diagram,
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but it seems that the carbon dioxide + isopropanol (2-propanol) system exhibits
type I or type II phase behavior, according to the classification of van
Konynenburg and Scott [16] or the more recent one of Privat and Jaubert [17].

The GEOS parameters, critical data, the acentric factors of the pure
substances used in the calculations are presented in Table 1 [18].

Table 1.
Critical data, acentric factor [18], and GEOS parameters for pure compounds
Compound TJ/K P/bar  V/em?Pmol! Q a. M
carbon dioxide 30421  73.83 93.90 0.2236 7.0517 0.3146
2-propanol 50830  47.64 220.0 0.6669 93838  0.6695
(isopropanol)

3. Results and discussions

In Fig. 1, the critical phase behavior of the carbon dioxide + isopropanol
system by GEOS/2PCMR is presented. All available critical data in the literature
are compared with GEOS predictions. As can be seen, the model predicts type |
phase behavior, meaning that there is only vapor-liquid continuous critical curve
stretching between the critical points of the pure components.
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Fig. 1. P-T fluid phase diagram for carbon dioxide (1) + isopropanol (2) system:
symbols, literature data [19-23]; thick line, predictions by GEOS.
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Although the parameters were obtained for mixture with the position
isomer, namely the carbon dioxide + 1-propanol binary system, it can be noticed
that the critical curve is remarkably well predicted. In Fig. 2, the critical pressures
and temperatures are plotted against carbon dioxide compositions. GEOS
predictions are in good agreement with the available experimental data.
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Fig. 2. P—x and T—x projections of the phase diagram for carbon dioxide (1) +
isopropanol (2) system: symbols, literature data [19-22]; lines, predictions by GEOS.
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Fig. 3. Comparison of literature VLE data [24,27-31,24] and predictions by GEOS
for carbon dioxide (1) + isopropanol (2) system.
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The set of binary interaction parameters was also used to predict all
available vapor-liquid equilibrium (VLE) data in a wide range of temperatures and
pressures. The literature experimental data and GEOS predictions are compared in

Figs. 3-10.
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Fig. 4. Comparison of literature VLE data [36,26,30,33,31,21,35,39,35,25,38,32]
and predictions by GEOS for carbon dioxide (1) + isopropanol (2) system.
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Fig. 5. Comparison of literature VLE data [24,40-41] and predictions by GEOS for
carbon dioxide (1) + isopropanol (2) system.
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Fig. 6. Comparison of literature VLE data [30,28,24,37,35,34,34] and predictions
by GEOS for carbon dioxide (1) + isopropanol (2) system.
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Fig. 7. Comparison of literature VLE data
[30,38,21,37,27,35,25,35,32,34,34,22,40] and predictions by GEOS for carbon dioxide
(1) + isopropanol (2) system.
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Fig. 8. Comparison of literature VLE data [37,22,30,38,34] and predictions by
GEOS for carbon dioxide (1) + isopropanol (2) system.
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Fig. 9. Comparison of literature VLE data [21,37,22,40,38,21,22] and predictions
by GEOS for carbon dioxide (1) + isopropanol (2) system.
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Fig. 10. Comparison of literature VLE data [21,40,22,22,22,22] and predictions by
GEOS for carbon dioxide (1) + isopropanol (2) system.

Although more than 500 equilibrium experimental points were collected for
the carbon dioxide + isopropanol system in the PHEQ database, it can be easily
noticed that there is a high degree of scatter among them. Figs. 4, 6, and 7 are
very good examples of scattered experimental data, as several data sets are
available at these temperatures (313.15, 323.15, and 333.15 K), from different
research groups all over the world.

In all figures it can be observed that GEOS predictions are reasonably good.
As expected, the critical points are very well predicted at each temperature. The
general trend is that the liquid curve is underestimated, but as temperature
increases, the predictions improve. The vapor phase is very well predicted over
the entire range, except at very high temperatures (Fig. 10).

6. Conclusions

The cubic GEOS was used to predict the phase behavior of the carbon
dioxide + isopropanol system. One unique set of binary interaction parameters
obtained using the ki12—/12 method for the carbon dioxide + 1-propanol system was
applied to model the carbon dioxide + isopropanol mixture in a wide range of
temperatures and pressures. The predicted results were compared with the
available literature data for carbon dioxide + isopropanol binary system. The
topology of phase behavior is very well predicted, taking into account the
relatively simple model and the modeling procedure used.
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