

TRANSESTERIFICATION OF VEGETABLE OILS TO BIODIESEL IN A FIXED BED CATALYST REACTOR: EXPERIMENTAL AND MODELLING

Cristian Eugen RĂDUCANU, Oana Cristina PÂRVULESCU*, Tănase DOBRE

Department of Chemical and Biochemical Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania

Abstract

Continuous transesterification of fresh sunflower oil with methanol (1/6 molar ratio) to fatty acid methyl esters (FAME) and glycerol was conducted for 1 h in a fixed-bed catalyst reactor (1.6 cm internal diameter and 55 cm height). A base catalyst was prepared by impregnation of activated carbon with a KOH solution followed by thermo-chemical activation (at 750 °C under CO₂ atmosphere) of impregnated precursor.

Fixed bed catalyst height (20, 40 cm), operating temperature (55, 65 °C), and reactant superficial velocity (0.14, 0.28 cm/s) were selected as transesterification process factors. 8 experiments were performed according to a 2³ factorial plan. The effects of process factors on FAME yield (91.60-95.74%), glycerol yield (73.31-90.48%), and time of glycerol forming (6-23 min) were predicted. Regression equations obtained in this study could be used to evaluate the transesterification performances for factor levels within the ranges considered in the experimental runs.

Key words: biodiesel, factorial experiment, fixed bed reactor, heterogeneous catalyst, transesterification, vegetable oil

1. Introduction

Transesterification of vegetable oils or animal fats with short chain alcohol (e.g., methanol, ethanol) in the presence of a catalyst (homogeneous or heterogeneous, acid, base or enzyme) leads to fatty acid alkyl esters (biodiesel) and glycerol [1-10]. Biodiesel is a clean, non-toxic, renewable, and biodegradable fuel as compared to petroleum diesel [5-9,11].

Vegetable (edible and non-edible) oils are extensively used for developing alternative fuels including biodiesel [7]. Its yield depends on various transesterification parameters, e.g., catalyst type, preparation method, and quantity, reactor type, contacting mode between reactants and catalyst, oil type as

* Corresponding author; E-mail: oana.parvulescu@yahoo.com

well as its content of free fatty acids (FFA) and water, oil/methanol ratio, reaction time and temperature [1-13].

At present, most of the biodiesel is produced from edible oils and methanol in the presence of base catalysts in batch reactors [1,7,8,13].

Heterogeneous catalysts are widely used due to their advantages over homogeneous ones, *e.g.*, they can be easily separated by filtration of the reaction mixture, do not involve a neutralization step, are reusable, non-corrosive, environmentally friendly, and less sensitive to the presence of water in the oil, which can lead to a significant decrease in the process cost [1-3,5,6,9-14]. Solid catalysts involve a suitable catalytic support that can “host” chemical compounds characterized by acid or base properties needed to catalyze the conversion of oil or fat to biodiesel.

This paper aims at studying the biodiesel production from fresh sunflower oil and methanol in a fixed-bed catalyst reactor with product recirculating. A supported catalyst was prepared by impregnation of activated carbon with a KOH solution followed by thermo-chemical activation of impregnated precursor. The effects of transesterification factors (fixed-bed catalyst height, operating temperature, and reactant superficial velocity) on process responses (biodiesel yield, glycerol yield, and time of glycerol forming) were evaluated.

2. Experimental

2.1. Materials

Refined sunflower oil (ARGUS SA, Constanta) and methanol (99%, Merck, Germany) were used as reactants for biodiesel production. KOH pellets (99%, Merck, Germany) and granular activated carbon (Chemviron Carbon Corporation, Belgium) were employed for heterogeneous catalyst preparation.


2.2. Procedure

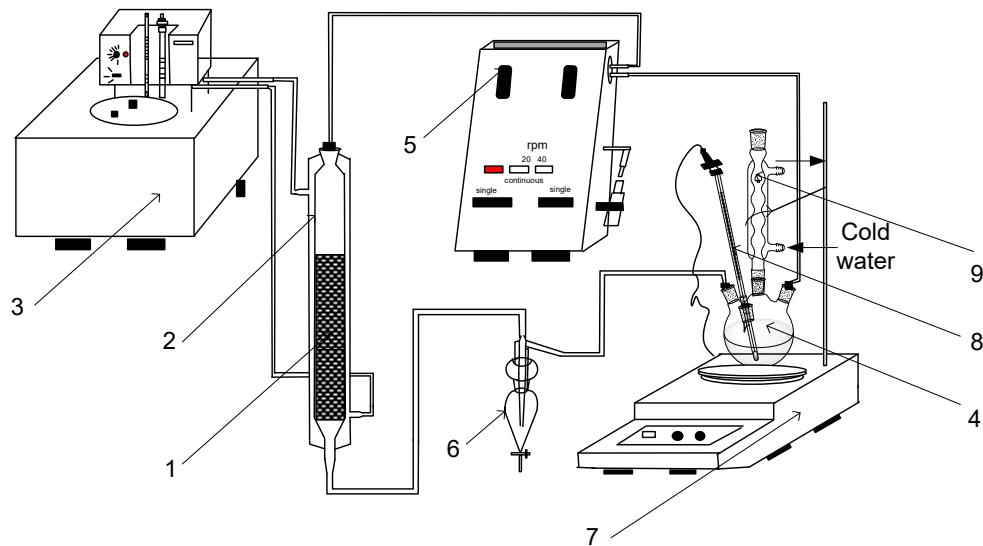
2.2.1. Catalyst preparation

Heterogeneous catalyst preparation consisted of two main stages, *i.e.*, impregnation of catalyst support and thermo-chemical activation of catalyst precursor obtained by impregnation. Activated carbon (AC) was firstly sieved, keeping only particles with a size larger than 1 mm for avoiding fine carbon powder to contaminate reaction products and thus eliminating ultrafiltration as a supplementary process stage.

Sieved AC was further impregnated with KOH as follows: it was heated at 130 °C in a drying stove, then immersed in 2M KOH solution, kept under stirring for 2 h at 80 °C, left for 24 h, filtered, and dried at 130 °C.

Thermo-chemical activation of dried impregnated AC (KOH/AC) was conducted in an experimental set-up presented in Fig. 1. KOH/AC granules were packed into a ceramic furnace (1) heated by an electric resistance fed by an autotransformer (2). The heating was performed up to 750 °C at a heating rate of 15 K/min. The temperature was measured by a K thermocouple (3) connected to a voltmeter (4). CO₂ from a tank (5), whose flow rate (5 L/h) was controlled by a valve (6) and measured by a flow-meter (7), was bubbled into distilled water contained in a flask (8). The mixture of CO₂ and water vapour exiting the bubbler (8) was fed into the furnace (1) and up-flowed through the fixed bed catalyst. KOH/AC supported catalyst was thermo-chemically activated for 1 h at 750 °C.

Fig. 1. Catalyst activation experimental set-up:
(1) furnace; (2) autotransformer; (3) thermocouple; (4) voltmeter; (5) CO₂ tank; (6) valve;
(7) flow-meter; (8) bubbler.


2.2.2. Biodiesel synthesis

Catalytic synthesis of biodiesel from fresh sunflower oil was conducted in an experimental set-up shown in Fig. 2. Activated catalyst granules (1) were packed in a reactor (2) consisting in a water-jacketed glass column (1.6 cm internal diameter and 55 cm height). The control of reaction temperature was performed by a thermostat water bath (3) with an error of ± 0.5 °C.

Fresh oil (200 g) and methanol (43.2 g) at a 1/6 oil to methanol molar ratio were fed into a four-neck round-bottom flask (4) forming two separate layers. A part of upper layer of methanol was pumped for 2 min by a dosing pump (5) into

the reactor (2), down-flowed through the fixed bed catalyst (1) producing potassium methoxide, and further was collected into the funnel (6). After that, the oil and the rest of methanol were stirred and heated using a heating magnetic stirrer (7) fitted with a contact thermometer (8) to control the temperature and a water-cooled condenser to avoid methanol losses (9). Mixed and heated reactants were pumped by the dosing pump (5) for 60 min into the catalytic reactor (2), wherein methyl esters and glycerol were obtained in the presence of potassium methoxide. Reactor effluent entered into the funnel (6) wherein two layers were separated, *i.e.*, a lower layer of glycerol and an upper one consisting mainly of reaction products and methanol. The filling of the funnel (6) determined the mixture recirculation in the mixing flask (4). The process was stopped after 60 min and the reaction mixture was left to separate for 24 h in the funnel (6).

Characteristic factors of transesterification process performed in the catalytic reactor were selected as follows: fixed bed catalyst height ($h=20, 40$ cm), operating temperature ($t=55, 65$ °C), and reactant superficial velocity ($w=0.14, 0.28$ cm/s). According to a 2^3 factorial plan (3 factors and 2 levels of each factors), 8 experimental runs were conducted. The effects of process factors on its responses in terms of fatty acid methyl ester yield (Y_{FAME}), glycerol yield (Y_G), and time of glycerol forming (τ_G) were evaluated. Y_{FAME} and Y_G were determined as percentages depending on theoretical values of product masses.

Fig. 2. Biodiesel synthesis experimental set-up:
 (1) supported catalyst; (2) fixed-bed catalytic reactor; (3) thermostatic water bath;
 (4) mixing flask; (5) micro-dosing pump; (6) separation and recirculation funnel;
 (7) heating magnetic stirrer; (8) contact thermometer; (9) water-cooled condenser.

3. Results and discussions

The process performances in terms of methyl ester yield ($Y_{FAME}=91.60\text{-}95.74\%$), glycerol yield ($Y_G=73.31\text{-}90.48\%$), and time of glycerol forming ($\tau_G=6\text{-}23$ min) under different operating conditions are specified in Table 1.

A statistical model based on a 2^3 factorial plan was used to predict the process performances depending on its factors ($h=20, 40$ cm, $t=55, 65$ °C, and $w=0.14, 0.28$ cm/s). Dimensionless values of process factors are given by Eqs. (1)-(3), where $h_{cp}=30$ cm, $t_{cp}=60$ °C, and $w_{cp}=0.21$ cm/s are centre-points. Process factors and responses corresponding to 8 experimental runs are summarized in Table 1 (no. 1-8).

Table 1
Experimentation matrix for 2^3 factorial experiment

No.	h (cm)	t (°C)	w (cm/s)	x_1	x_2	x_3	Y_{FAME} (%)	Y_G (%)	τ_G (min)
1	20	55	0.14	-1	-1	-1	92.40	84.97	21
2	20	55	0.28	-1	-1	1	95.02	78.97	23
3	20	65	0.14	-1	1	-1	93.57	78.73	18
4	20	65	0.28	-1	1	1	91.60	76.36	20
5	40	55	0.14	1	-1	-1	95.41	87.14	9
6	40	55	0.28	1	-1	1	91.88	90.48	6
7	40	65	0.14	1	1	-1	93.56	85.31	10
8	40	65	0.28	1	1	1	95.74	73.31	7
9	30	60	0.21	0	0	0	93.73	82.55	15
10	30	60	0.21	0	0	0	93.68	83.83	14
11	30	60	0.21	0	0	0	93.61	80.84	14
12	30	60	0.21	0	0	0	93.63	81.48	15

$$x_1 = \frac{h-30}{10} \quad (1)$$

$$x_2 = \frac{t-60}{5} \quad (2)$$

$$x_3 = \frac{w-0.21}{0.07} \quad (3)$$

Regression coefficients of statistical model described by Eq. (4), *i.e.*, β_{ij} ($i=1..N=8, j=1..3$), which are specified in Table 2, were determined by processing the data summarized in Table 1 (no. 1-8) according to characteristic procedure of a 2^3 factorial experiment.

$$y_j = \beta_{1j} + \beta_{2j}x_1 + \beta_{3j}x_2 + \beta_{4j}x_3 + \beta_{5j}x_1x_2 + \beta_{6j}x_1x_3 + \beta_{7j}x_2x_3 + \beta_{8j}x_1x_2x_3 \quad (4)$$

Table 2

Significance of regression coefficients of Eq. (4)

	<i>i</i>	1	2	3	4	5	6	7	8
	β_{i1} (%)	93.65	0.5	-0.03	-0.088	0.533	-0.25	0.14	1.287
	$y_{1,mn,cp}$ (%)					93.66			
	$\sigma_{rp,1}$ (%)					0.052			
	$\sigma_{\beta,1}$ (%)					0.018			
	t_{i1}	5089	27.17	1.630	4.755	28.94	13.59	7.608	69.97
<i>j</i> =1	$t_{i1}-3.176$	>0	>0	<0	>0	>0	>0	>0	>0
	β_{i2} (%)	81.91	2.151	-3.481	-2.129	-1.269	-0.036	-1.464	-2.371
	$y_{2,mn,cp}$ (%)					82.18			
	$\sigma_{rp,2}$ (%)					1.31			
	$\sigma_{\beta,2}$ (%)					0.463			
	t_{i2}	176.8	4.643	7.514	4.595	2.739	0.078	3.159	5.118
<i>j</i> =2	$t_{i2}-3.176$	>0	>0	>0	>0	<0	<0	<0	>0
	β_{i3}	14.25	-6.25	-0.50	-0.25	1.00	-1.25	0	0
	$y_{3,mn,cp}$ (min)					14.5			
	$\sigma_{rp,3}$ (min)					0.577			
	$\sigma_{\beta,3}$ (min)					0.204			
	t_{i3}	69.81	30.62	2.45	1.225	4.899	6.124	0	0
<i>j</i> =3	$t_{i3}-3.176$	>0	>0	<0	<0	>0	>0	=0	=0

In order to determine the significance of regression coefficients using the Student's test [15-17], 4 centre-point runs ($N_{cp}=4$) were performed (no. 9-12 in Table 1). Characteristic parameters of centre-point runs, *i.e.*, mean value of response ($y_{j,mn,cp}$), reproducibility standard deviation ($\sigma_{rp,j}$), and number of degrees of freedom (v_1), as well as standard deviation associated to regression coefficients ($\sigma_{\beta,j}$) and values of Student's random variable (t_{ij}), given by Eqs. (5)-(9), are presented in Table 2.

$$y_{j,mn,cp} = \frac{\sum_{k=1}^{N_{cp}} y_{jk,cp}}{N_{cp}} \quad (5)$$

$$\sigma_{rp,j} = \sqrt{\frac{\sum_{k=1}^{N_{cp}} (y_{jk,cp} - y_{j,mn,cp})^2}{v_1}} \quad (6)$$

$$v_1 = N_{cp} - 1 = 3 \quad (7)$$

$$\sigma_{\beta,j} = \frac{\sigma_{rp,j}}{\sqrt{N}} \quad (8)$$

$$t_{ij} = \frac{|\beta_{ij}|}{\sigma_{\beta,j}} \quad (9)$$

Regression coefficients satisfying the condition $t_{ij} - t_{\alpha,v_1} > 0$ were considered as significant, where $t_{\alpha,v_1} = 3.176$ represents the theoretical value of Student's variable corresponding to a significance level (α) of 0.05 and $v_1=3$ [15-17]. Considering only significant coefficients (bold characters in Table 2), the statistical model described by Eq. (4) becomes:

$$y_1 = Y_{FAME} = 93.65 + 0.5x_1 - 0.088x_3 + 0.533x_1x_2 - 0.25x_1x_3 + 0.14x_2x_3 + 1.287x_1x_2x_3 \quad (10)$$

$$y_2 = Y_G = 81.91 + 2.151x_1 - 3.481x_2 - 2.129x_3 - 2.371x_1x_2x_3 \quad (11)$$

$$y_3 = \tau_G = 14.25 - 6.25x_1 + x_1x_2 - 1.25x_1x_3 \quad (12)$$

Referring to the effect of process factors, *i.e.*, fixed bed height (x_1), operating temperature (x_2), and reactant superficial velocity (x_3), on the process responses, regression equations (10)-(12) indicate the following issues: (i) Y_{FAME} increases with x_1 , x_1x_2 , x_2x_3 , and $x_1x_2x_3$, as well as it decreases with an increase in x_3 and x_1x_3 ; (ii) Y_G increases with x_1 and decreases with an increase in x_2 , x_3 , and $x_1x_2x_3$; (iii) x_1 and x_1x_3 interaction have a negative effect on τ_G , whereas x_1x_2 interaction has a positive effect. Statistical model described by Eqs. (10)-(12) could be applied to estimate the performances of transesterification process for factor levels within the ranges considered in the statistical analysis, *i.e.*, $h=20-40$ cm, $t=55-65$ °C, and $w=0.14-0.28$ cm/s.

4. Conclusions

Transesterification of fresh sunflower oil with methanol to FAME and glycerol was continuously performed in a fixed-bed catalyst reactor. A supported catalyst was prepared by impregnation of activated carbon (AC) with a 2M KOH solution followed by thermo-chemical activation (at 750 °C under CO₂ atmosphere) of impregnated precursor. Activated catalyst (KOH/AC) was packed in a water-jacketed glass column (1.6 cm internal diameter and 55 cm height) and tested in the transesterification.

Fresh oil and methanol (1/6 molar ratio) were mixed, heated, and further passed (for 1 h) through the fixed-bed catalyst. Reactor effluent, consisting mainly of FAME, glycerol, and unreacted methanol, was recirculated in the process.

The effects of process factors, *i.e.*, fixed bed catalyst height ($h=20, 40$ cm), operating temperature ($t=55, 65$ °C), and reactant superficial velocity ($w=0.14, 0.28$ cm/s), on its responses in terms of FAME yield, glycerol yield, and time of

glycerol forming were evaluated using a 2^3 factorial plan. FAME yield (91.60-95.74%) increased with h , ht , tw , and htw , whereas it decreased with an increase in w and hw interaction. Glycerol yield (73.31-90.48%) increased with h and decreased with an increase in t , w , and htw interaction. The time of glycerol forming (6-23 min) was negatively influenced by h and hw interaction, whereas ht interaction had a positive effect on it. Regression equations obtained by processing the experimental data could be applied to predict the transesterification performances for factor levels within the ranges considered in the study.

Acknowledgements

Financial support from Romanian Society of Chemical Engineering for attending the 20th RICCCE Conference is gratefully acknowledged by Cristian Eugen Răducanu.

REFERENCES

- [1] Aziz M.A.A., Puad K., Triwahyono S., Jalil A.A., Khayoon M.S., Atabani A.E., Ramli Z., Majid Z.A., Prasetyoko D., Hartanto D., Transesterification of croton *megalocarpus* oil to biodiesel over WO_3 supported on silica mesoporous-macroparticles catalyst, *Chemical Engineering Journal*, 316, (2017), 882-892.
- [2] Baskar G., Gurugulladevi A., Nishanthini T., Aiswarya R., Tamilarasan K., Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst, *Renewable Energy*, 103, (2017), 641-646.
- [3] Fadhil A.B., Aziz A.M., Tamer M.H.A., Biodiesel production from *Silybum marianum* L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification, *Energy Conversion and Management*, 108, (2016), 255-265.
- [4] Ghadge S.V., Raheman H., Process optimization for biodiesel production from mahua (*Madhuca indica*) oil using response surface methodology, *Bioresource Technology*, 97, (2006), 379-384.
- [5] Maneerung T., Kawi S., Dai Y., Wang C.H., Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure, *Energy Conversion and Management*, 123, (2016), 487-497.
- [6] Martinez S.L., Romero R., Natividad R., Gonzalez J., Optimization of biodiesel production from sunflower oil by transesterification using Na_2O/NaX and methanol, *Catalysis Today*, 220-222, (2014), 12-20.
- [7] Meher L.C., Sagar D.V., Naik S.N., Technical aspects of biodiesel production by transesterification-a review, *Renewable and Sustainable Energy Reviews*, 10(3), (2006), 248-268.
- [8] Muthukumaran C., Praniesh R., Navamani P., Swathi R., Sharmila G., Kumar N.M., Process optimization and kinetic modeling of biodiesel production using non-edible *Madhuca indica* oil, *Fuel*, 195, (2017), 217-225.
- [9] Vicente G., Coterón A., Martinez M., Aracil J., Application of the factorial design of experiments and response surface methodology to optimize biodiesel production, *Industrial Crops and Products*, 8, (1998), 29-35.
- [10] Yadav M., Singh V., Sharma Y.C., Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: Process optimization and homogeneity study of catalyst, *Energy Conversion and Management*, 148, (2017), 1438-1452.

- [11] Lee S.L., Wong Y.C., Tan Y.P., Yew S.Y., Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst, *Energy Conversion and Management*, 93, (2015), 282-288.
- [12] Feng Y., Zang A., Li J., He L., A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst, *Bioresource Technology*, 102, (2011), 3607-3609.
- [13] Jamil F., Al-Muhatseb A.H., Myint M.T.Z., Al-Hinai M., Al-Haj L., Baawain M., Al-Abri M., Kumar G., Atabani A.E., Biodiesel production by valorizing waste *Phoenix dactylifera* L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn/MgO-ZrO₂), *Energy Conversion and Management*, 155, (2018), 128-137.
- [14] Mohamad M., Ngadi N., Wong S.L., Jusoh M., Yahya N.Y., Prediction of biodiesel yield during transesterification process using response surface methodology, *Fuel*, 190, (2017), 104-112.
- [15] Cioroiu D.R., Pârvulescu O.C., Koncsag C.I., Dobre T., Răducanu C., Rheological characterization of algal suspensions for bioethanol processing, *Rev. Chim. (Bucharest)*, 68(10), (2017), 2311-2316.
- [16] Ion V.A., Pârvulescu O.C., Dobre T., Volatile organic compounds adsorption onto neat and hybrid cellulose, *Applied Surface Science*, 335, 137-146, 2015.
- [17] Orbeci C., Pârvulescu O.C., Accelemanu E., Dobre T., Effects of process factors on carbon dioxide reforming of methane over Ni/SBA-15 catalyst, *Rev. Chim. (Bucharest)*, 68(10), (2017), 2325-2328.