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Abstract 
Tryptophan (TRP) is an aromatic non-polar amino-acid essential, whose biosynthesis 

maximization is of high practical importance in industry, and medicine. On one hand, it is 

to underline that TRP synthesis is an oscillatory process strongly connected to the 

glycolysis through the PEP (phosphoenolpyruvate) node. On the other hand, it is well-

known that glycolysis, under certain environmental conditions, displays autonomous 

oscillations of the glycolytic intermediates’ concentrations thus reflecting the dynamics of 

the control and regulation of this major catabolic pathway with a major role in the cell 

central carbon metabolism (CCM) in living cells. Consequently, glycolysis model is the 

‘core’ module of any systematic and structured model-based analysis of most of metabolic 

sub-process. By coupling two adequate reduced kinetic models for the glycolysis and TRP 

synthesis in the E. coli cells, adopted from literature, with the model of a semi-continuous 

bioreactor, this paper derives, for the first time, an in silico analysis of the optimal 

operating conditions of the bioreactor used for tryptophan synthesis, with accounting for 

the two interfering oscillatory processes. The paper also points-out the main factors 

influencing the glycolytic oscillations, by in silico (model-based) identifying some 

conditions, able to be modulated leading to occurrence of stable glycolytic oscillations in 

the E. coli cells, and TRP synthesis optimisation. 
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1. Introduction 

 When developing an industrial bioprocess, one essential engineering 

problem concerns the choice not only of the best bioreactor operating policy, but 

also the most suitable cell culture with genetically modified micro-organisms 

(GMO) to get the maximum reactor productivity for the target metabolite. As 

described in the literature, such GMO-s, can be in-silico (math model-based) 

design by using Systems Biology, Bioinformatics, and (Bio)Chemical 

Engineering tools [1].  

 In the last decades, there has been a continuous trend to replace complex 

chemical syntheses, energetically intensive and generating toxic wastes, with 
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biosynthesis or biological  processes to produce some fine chemicals or organic 

compounds in food, pharmaceutical, or detergent industry, using enzymatic or cell 

culture batch, semi-batch (fedbatch), fixed-bed, or fluidized-bed reactors.[1,2] 

This includes, among others, the production of monosaccharides derivatives, 

organic acids, alcohols, amino acids, and so on by using single-enzymatic or 

multi-enzymatic reactors, or the production of baker’s yeast, food products and 

additives, recombinant proteins (enzymes and vaccines), and biopolymers by 

using bioreactors with cell cultures. The mentioned advantages of enzymatic 

synthesis, and of fermentation using cell cultures, over chemical catalytic 

processes are shortly underlined in Fig.1. 

 

 
Fig. 1. Advantages of enzymatic synthesis, and of fermentation using cell cultures, over 

chemical catalytic processes. Structure of the production cost in the case of biosynthesis with free 

vs. immobilized enzymes 

  

On the other hand, optimization of biological or enzymatic reactors requires 

adequate kinetic models of the biological / enzymatic process [1, 11]. This is why 

tremendous experimental and computational efforts have been invested in this 

respect, despite the high complexity of biological / cellular processes. 

 Glycolysis is an essential part of the cell metabolism. Glycolysis is the 

metabolic pathway that converts glucose (GLC) into pyruvate (PYR) (Fig. 2-4, 9). 

The free energy released by the subsequent tricarboxylic acid cycle (TCA) 

originating from pyruvate is used to form the high-energy molecules ATP 

(adenosine triphosphate), and NADH (reduced nicotinamide adenine dinucleotide) 

that support the glycolysis and numerous enzymatic syntheses into the cell [3]. 
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Fig. 2. Glycolysis pathway is the “core” of the CCM [8]. 

 

In fact, glycolysis, together with the phosphotransferase (PTS)-system for glucose 

transport into the cell, the pentose-phosphate pathway (PPP), and the tricarboxylic 

acid cycle (TCA), characterize the central carbon metabolism (CCM) [1,2,4,8] 

(Fig. 2, 3) which is responsible for all metabolic syntheses. The CCM model is the 

‘core’ part of any systematic and structured model-based analysis of the cell 

metabolism with immediate practical applications, such as target metabolite 

synthesis optimization, in-silico re-programming of the cell metabolism to design 

new GMO-s, of practical applications in the biosynthesis industry, environmental 

engineering, and medicine [1-3]. As glycolysis is connected and influences most 

of cell metabolic processes, modulating the bacteria glycolysis based on lumped 

kinetic model is a classical but still of high interest subject [2,5].  

By using the lumped dynamic model of Maria [4], this paper is aiming at 

identifying some conditions allowing modulating the characteristics (oscillation 

period, species concentration amplitude), of the glycolytic oscillations in E. coli 

cells. [3,5]. Such a model can be used, for instance to maximize the production of 

amino-acids (TRP here) by using immobilized GMO cells in a bioreactor [2].  
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2. Adopted kinetic model of glycolysis and TRP synthesis in E. coli 

prokaryotic bacteria 

 The adopted glycolysis kinetic model in E. coli (given in Table 2) is those 

proposed by Maria [4], based on the reaction pathway presented in Fig.4 with the 

rate expressions given in Figs. 5-7. How glycolytic oscillations occur is shortly 

explained in section 3.  

 Aiming to maximize TRP production, by modulating the glycolysis 

characteristics by which TRP synthesis is closely connected through the PEP 

node (Fig.9), a TRP synthesis kinetic model it is also necessary. 

Based on a simplified TRP synthesis pathway given in Fig. 9 and extended 

studies reviewed by [2,3,5,7], Bhartiya et al.[6] proposed a simplified kinetic 

model for the TRP synthesis given in the Table 4.  

 

 
Fig. 3. Glycolysis and carbohydrate metabolism (CCM) model in E.coli of [9]. 

 

However, this adopted TRP model [6] (Table 1) suffered two 

modifications to match with the Bhartiya [6] experimental data, as suggested by 

Maria et al. [7]: I) The rate constant 4k  was re-estimated in order to fit the 

experimental curves of [6], that is the OR, mRNA, T, E species trajectories given 

in Figure 9 (stationary [PEP]s = 1 mM case), by using a classic estimator [7] and, 

II) To be connected to the glycolysis pathway (as displayed in Fig. 9), the TRP 

synthesis kinetic model of Table 4, was completed with terms accounting for the 

connection with the glycolysis through PEP node, PEP being explicitly included 

in the TRP synthesis rate (see the /dc dtT  term in Table 4; the nitrogen source in 
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the TRP balance  is considered in excess and included in the 4k )[2-7]. Parameter 

estimation has been done by using the effective MMA of Maria [16]. 

 

 
Fig. 4. A comparison of the glycolysis models of [10], and of [4]. The last one 

allows simulating glycolytic oscillations. 
 
 

 

3. How glycolytic oscillations occur and simulation of some oscillation 

conditions 

How glycolytic oscillations occur? Oscillations in chemical systems 

represent periodic state variable (i.e. species concentrations) transitions in time. 

According to Franck [12], spontaneous occurrence of self-sustained oscillations in 

chemical systems is due the coupled actions of at least two simultaneous 

processes. Oscillations sourced in a so-called “oscillation node” (that is a 

chemical species, or a reaction), on which concomitant rapid positive (perturbing) 

and slow negative (recovering) regulatory loops act. Because the coupling action 

between the simultaneous processes is mutual, the total coupling effect actually 

forms closed feedback loops for each kinetic variable involved. There exists a 

well-established set of essential thermodynamic and kinetics prerequisites for the 

occurrence of spontaneous oscillations [12]. 
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Fig. 5. Explanation of the regulatory loops simultaneously acting on the reaction V2, that produce 

glycolytic oscillations [3-5]. 

 

 
 

Fig. 6. The differential mass balance of the glycolysis kinetic model [4]. 
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Fig. 7. Reaction rate expressions of the glycolysis kinetic model [4]. 

 

 
Fig. 8. Some oscillation domains of the glycolysis in E. coli in-silico simulated by using Maria [4] 

model. Suggestions to design GMO to modulate glycolytic oscillations [2,3,5]). 
 

 

In the glycolysis case, as revealed by Termonia and Ross [13-15], glycolytic 

oscillations occurrence is due to the antagonistic action of two processes on 

regulating the V2 reaction rate that converts F6P in FDP (see reaction scheme in 

the Figs. 4-6). The glycolytic oscillation occurrence and characteristics (period, 

amplitude) are influenced by both external (environmental) and internal 

(genomic) factors [3, 4]. 
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4. Bioreactor and cellular bioprocess structured model coupling glycolysis 

and TRP (tryptophan) synthesis in the E. coli cell 
 

 By adopting the glycolysis kinetic model of Maria [4], one can determine, 

by repeated simulations, the cell external and internal conditions leading to 

glycolytic oscillation occurrence, and conditions determining TRP synthesis 

maximization. In simulations, one considers the E. coli cell growing conditions of 

the semi-continuous bioreactor of Chassagnole et al. [10], given in Table 1 by 

using sparking air in excess, and necessary nutrients (for a cell culture 

equilibrated growth). The main mass balance equations of the bioreactor and 

glycolysis dynamic model are presented in Tables 2-3. To obtain the model 

solution with enough precision, a low-order stiff integrator (“ODE23S” routine) 

of the Matlab™ package was used.  

 
Table 1  

Nominal operating conditions of the tested semi-batch bioreactor (SBR) [2]. 

 
 

 

5. Simulation results 
 

Simulations were made for the cell culture conditions given in Table 1, 

and for cells with [AMDTP]total = 5.82 mM.[3] Following the discussion in the 

previous chapter on oscillations occurrence, the influence of two main factors is 

studied here, that is:  

i) [Glc]ext (related to the bioreactor operating conditions); 

ii) k6 reaction rate (determined by the ATP-ase characteristics, related 

to the cell phenotype),  

iii) all other reaction rate constants, and [AMDTP] level were kept 

unchanged during simulations of values given in Tables 2-3. 

Simulations were conducted in an exhaustive way, by covering the ranges of the 

initial [Glc]ext = [0.01-1] mM (at t = 0), and k6 = [0.1-20] 1/min. The results are 

plotted in Fig. 8. These simulation results lead to several model-based conclusions:  

I) Oscillations are basically determined by the external level of [Glc] (triggering 

the glucose import into the cell) but also, for a certain [AMDTP], total energy 
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resources level in the cell (assumed to be quasi-constant in the present case 

study), are determined by the ATP to ADP conversion rate, and ATP 

regeneration rate (reflected here by k6, and K constants of Table 2). 
Table 2.  

The glycolysis kinetic model of Maria [4] and its parameters. 

 
 

II) Oscillations occur for low [Glc]ext but with a slow Glc import, due to 

relatively low k6 constant values (i.e., a cell with a slow ATP conversion to 

ADP and ATP recovery); 

III) By contrast, high levels of [Glc]ext, triggering high rate import, also produce 

glycolytic oscillations for larger values of k6, due to the limited ATP recovery 

rate (k6 being also related to the K constant governing the AMDTP pathway). 

Eventually, for too small, or too large k6 values, the glycolysis reaches its 

steady-state. 
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Table 3 

The dynamic model of the semi-continuous bioreactor of Maria et al. [2] and its parameters 

 
 

Table 4 

TRP synthesis kinetic model [6] coupled with the glycolysis kinetic model [4] through PEP 
node [2,5]. 

 
 

IV) By contrast, high levels of [Glc]ext, triggering high rate import, also produce 

glycolytic oscillations for larger values of k6, due to the limited ATP recovery 

rate (k6 being also related to the K constant governing the AMDTP pathway). 

Eventually, for too small, or too large k6 values, the glycolysis reaches its 

steady-state. 
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V) The glycolytic oscillation domains in Fig. 8, plotted in terms of k6 and 

[Glc]ext, are very narrow, revealing their high sensitivity with respect to the 

inducing factors, and their poor stability. As expected, such a result indicates 

that oscillations stability is also dependent on the micro-organism 

characteristics. For instance, by contrast, the glycolytic oscillations in yeast 

have been proved [3] to be very robust even in the presence of environmental 

noise, “oscillations being a side-effect of the trade-offs between robustness and 

regulatory efficiency of the feedback control of the auto-catalytic reaction 

network”.  

Simulation of the bioreactor dynamics with including coupled glycolysis and TRP 

kinetics models, revealed several conclusions relevant for TRP production 

maximization [2]: 

I) The glucose initial concentration in the bioreactor, and its concentration in the 

feeding solution do not influence quantitatively the bioreactor performances (see 

Fig. 10);  

II) On the contrary, the TRP production is strongly influenced by the 

bioreactor dilution. The maximum TRP production reaches the value of 0.47 

(micro-M/min) for certain operating conditions ([GLC]o = 1 mM; dilution rate 

of 0.0003097 1/min) with quickly amortized oscillations (QAO) for glycolysis, 

and quasi-steady-state (QSS) regime for TRP synthesis (see Fig. 11)[2]. 

III) The bioreactor dilution (adjusted to be the same with the cell dilution rate) 

strongly influences the QSS / OSC (stable oscillations) regime of the cell 

bioprocess. 

IV) In all cases, it is worth noting the firm evolution of the glucose level in the 

bulk-phase toward its steady-state (Fig. 10). 

V) For the all set points investigated here and by [2], it is to remark the strong 

influence of the dilution (i.e. bioreactor dilution taken equal to the cell dilution) 

on the oscillatory behavior of the two cell sub-processes. While the glycolytic 

species present stationary or amortized oscillations, the TRP synthesis 

oscillations are very stable, even if of small amplitude, tending to QSS under 

some glycolytic/bioreactor conditions. 

VI) Of course, other variables, not accounted in the model (cell characteristics 

reflected in the model constants) can influence the location of the problem 

solution. Subsequent experimental checks can validate this problem solution 

and, eventually, in the case of inconsistencies, they will lead to the model 

updating/completions for correcting its adequacy in order to perform futures 

bioreactor optimization analyses. 
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Fig. 9. Reaction pathway of glycolysis coupled with the TRP synthesis [2]. TRP synthesis kinetic 

model [6] coupled with the glycolysis kinetic model [4] through PEP node [2,5]. 

 

 
 

Fig. 10. In-silico evidence that tryptophan synthesis productivity is not influenced by the initial or 

inlet concentrations of glucose in the chemostat [2,3,5]. 
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Fig. 11. In-silico determination of the optimal set-point (bioreactor and cell dilution) leading to 

maximization of the tryptophan synthesis [2,3,5]. 

 

6. Conclusions 

 The use of reduced kinetic models when modelling complex metabolic 

pathways is a continuous challenging subject when developing structured cell 

simulators for various applications (flux analysis, target metabolite synthesis 

optimization, in-silico re-programming of the cell metabolism and design of new 

micro-organisms, bioreactor / bioprocess optimization)[1]. As exemplified by the 

present case study, concerning E. coli glycolysis influence on the TRP synthesis, 

reduced kinetic models, of simple and easily adaptable structure to various cell 

cultures, can successfully be used for quick analyses of cell metabolism, such as 

the substrate utilization, oscillation occurrence, or structured interpretation of 

metabolic changes in modified cells.  

The obtained results in the present paper prove, in a simple, but eloquent 

way that, beside cell phenotype characteristics (determinant for the TRP operon 

expression, and for the ATP regeneration engine), glycolysis is one of the major 

factors determining the TRP synthesis efficiency, and TRP maximization. So, to 

maximize the cell TRP production, glycolysis should be modulated to increase its 

speed. 

 This paper also proves in a relatively simple, yet eloquent way, how a 

lumped, but enough detailed and adequate dynamic model of essential cell 

metabolic processes (CCM) can support in silico engineering evaluations, if the 
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cell nano-scale metabolism (including metabolic by-products) will be somehow 

reflected by the bioreactor macro-scale dynamic model [2,3,7]. 
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Abbreviations and notations 
 

13DPG, 

PGP 
1,3-diphosphoglycerate 

Glc, 

GLC 
glucose 

2PG 2-phosphoglycerate 
GLCex, 

GLC(ex) 
Glucose in the environment  

3PG 3-phosphoglycerate GLN glutamine 

AC acetate GRC genetic regulatory circuits 

AA amino-acid H Hydrogen radical 

ACCOA acetyl-coenzyme A HK-ase hexokinase 

AK-ase adenylate kinase LAC lactate 

AMDTP 

adenosin-

(mono)(di)(tri)phosphate 

lump 

MAL malate 

ADP adenosin-diphosphate mM Milli-molar 

AMP adenosin-monophosphate MRNA 

tryptophan mRNA during its 

encoding gene dynamic 

transcription, and translation 

ATP adenosin-triphosphate 
NAD(P)

H 

nicotinamide adenine 

dinucleotide (phosphate) 

reduced 

ATP-ase ATP monophosphatase O TRP active gene 

CCM central carbon metabolism OR 
the complex between O and R 

(aporepressor of the TRP gene) 

CIT citrate OT total TRP operon 

CHR chorismat P, Pi Phosphoric acid 

DAHP 

3-Deoxy-D-arabino-

heptulosonic acid 7-

phosphate 

PEP phosphoenolpyruvate 

DHAP dihydroxyacetonephosphate PFK-ase phosphofructokinase 

DW dry-weight PK-ase pyruvate kinase 

E enzyme anthranilate synthase Phe Phenylalanine 

ETOH ethanol PPP pentose-phosphate pathway 

F6P fructose-6-phosphate PPH prephenate 

FAD Flavin adenine dinucleotide PTS 

phosphotransferase, or 

phosphoenolpyruvate: glucose 

phosphotransferase system 
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FADH 
semiquinone form of the 

reduced FAD 
PYR pyruvate 

FADH2 
hydroquinone form of the 

reduced FAD 
QSS quasi-steady-state 

FDP fructose-1,6-biphosphate R aporepressor of the TRP gene 

FOR formate 
SUCC, 

SUC 
succinate 

G3P, GAP glyceraldehyde-3-phosphate TCA tricarboxylic acid cycle 

G6P glucose-6-phosphate TF transcription factors 

GKase glucokinase T, TRP tryptophan 

GERM 
gene expression regulatory 

module 

Tyr Tyrosine 

X5P Xylulose 5-phosphate 

jc  species j concentration Indices O =initial; syn= synthesis 

D cell content dilution rate Index s Stationary (quasi-steady-state) 

jk , jK  rate constants ytrp  stoichiometric coeff.  

t , tc  Time, Cell cycle 
Super-

script 
n =  reaction order 

QAO quickly amortized oscillations OSC stable oscillations 
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