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Abstract

Tryptophan (TRP) is an aromatic non-polar amino-acid essential, whose biosynthesis
maximization is of high practical importance in industry, and medicine. On one hand, it is
to underline that TRP synthesis is an oscillatory process strongly connected to the
glycolysis through the PEP (phosphoenolpyruvate) node. On the other hand, it is well-
known that glycolysis, under certain environmental conditions, displays autonomous
oscillations of the glycolytic intermediates’ concentrations thus reflecting the dynamics of
the control and regulation of this major catabolic pathway with a major role in the cell
central carbon metabolism (CCM) in living cells. Consequently, glycolysis model is the
‘core’ module of any systematic and structured model-based analysis of most of metabolic
sub-process. By coupling two adequate reduced kinetic models for the glycolysis and TRP
synthesis in the E. coli cells, adopted from literature, with the model of a semi-continuous
bioreactor, this paper derives, for the first time, an in silico analysis of the optimal
operating conditions of the bioreactor used for tryptophan synthesis, with accounting for
the two interfering oscillatory processes. The paper also points-out the main factors
influencing the glycolytic oscillations, by in silico (model-based) identifying some
conditions, able to be modulated leading to occurrence of stable glycolytic oscillations in
the E. coli cells, and TRP synthesis optimisation.

Keywords: Reduced dynamic models; Glycolysis; Tryptophan synthesis;
Escherichia coli; Oscillation occurrence; Bioreactor optimization

1. Introduction

When developing an industrial bioprocess, one essential engineering
problem concerns the choice not only of the best bioreactor operating policy, but
also the most suitable cell culture with genetically modified micro-organisms
(GMO) to get the maximum reactor productivity for the target metabolite. As
described in the literature, such GMO-s, can be in-silico (math model-based)
design by using Systems Biology, Bioinformatics, and (Bio)Chemical
Engineering tools [1].

In the last decades, there has been a continuous trend to replace complex
chemical syntheses, energetically intensive and generating toxic wastes, with
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biosynthesis or biological processes to produce some fine chemicals or organic
compounds in food, pharmaceutical, or detergent industry, using enzymatic or cell
culture batch, semi-batch (fedbatch), fixed-bed, or fluidized-bed reactors.[1,2]
This includes, among others, the production of monosaccharides derivatives,
organic acids, alcohols, amino acids, and so on by using single-enzymatic or
multi-enzymatic reactors, or the production of baker’s yeast, food products and
additives, recombinant proteins (enzymes and vaccines), and biopolymers by
using bioreactors with cell cultures. The mentioned advantages of enzymatic
synthesis, and of fermentation using cell cultures, over chemical catalytic
processes are shortly underlined in Fig.1.

Why biosynthesis with GMO?

Parameter Classical fermentation ~ Enzymes Chemo catalysts

Catalyst living cells Enzymes Metals, acids, ...

Catalyst concentration (kg m’) 10200 50-500 50 - 1000

Specific reactions sometimes often often

Reaction conditions moderate moderate moderate — extreme

Sterility yes yes no

Yield (%) 10-95 70-99 70-99

Important cost item cooling water enzyme varies

Problems regulation of stability selectivity. stability
IiCIo0rganisms

Enzymatic reactions and bioprocesses
can replace difficult chemical syntheses,
leading to:

- high selectivity and yields

- less by-products

Relative cost (%)

- less energy

- less environmental pollution

- small biocatalyst concentration

- moderate reaction conditions + ‘ e
Protein engineering / nano-structures / Homogeneous Immobilized
GMO lead to new biocatalytic systems betch) {ooninuous)

Fig. 1. Advantages of enzymatic synthesis, and of fermentation using cell cultures, over
chemical catalytic processes. Structure of the production cost in the case of biosynthesis with free
vs. immobilized enzymes

On the other hand, optimization of biological or enzymatic reactors requires
adequate kinetic models of the biological / enzymatic process [1, 11]. This is why
tremendous experimental and computational efforts have been invested in this
respect, despite the high complexity of biological / cellular processes.

Glycolysis is an essential part of the cell metabolism. Glycolysis is the
metabolic pathway that converts glucose (GLC) into pyruvate (PYR) (Fig. 2-4, 9).
The free energy released by the subsequent tricarboxylic acid cycle (TCA)
originating from pyruvate is used to form the high-energy molecules ATP
(adenosine triphosphate), and NADH (reduced nicotinamide adenine dinucleotide)
that support the glycolysis and numerous enzymatic syntheses into the cell [3].
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Fig. 2. Glycolysis pathway is the “core” of the CCM [8].

In fact, glycolysis, together with the phosphotransferase (PTS)-system for glucose
transport into the cell, the pentose-phosphate pathway (PPP), and the tricarboxylic
acid cycle (TCA), characterize the central carbon metabolism (CCM) [1,2,4,8]
(Fig. 2, 3) which is responsible for all metabolic syntheses. The CCM maodel is the
‘core’ part of any systematic and structured model-based analysis of the cell
metabolism with immediate practical applications, such as target metabolite
synthesis optimization, in-silico re-programming of the cell metabolism to design
new GMO-s, of practical applications in the biosynthesis industry, environmental
engineering, and medicine [1-3]. As glycolysis is connected and influences most
of cell metabolic processes, modulating the bacteria glycolysis based on lumped
kinetic model is a classical but still of high interest subject [2,5].

By using the lumped dynamic model of Maria [4], this paper is aiming at
identifying some conditions allowing modulating the characteristics (oscillation
period, species concentration amplitude), of the glycolytic oscillations in E. coli
cells. [3,5]. Such a model can be used, for instance to maximize the production of
amino-acids (TRP here) by using immobilized GMO cells in a bioreactor [2].

32



In-silico modulate glycolytic oscillator in modified E. Coli to control bioprocesses of industrial
interest

2. Adopted kinetic model of glycolysis and TRP synthesis in E. coli
prokaryotic bacteria

The adopted glycolysis kinetic model in E. coli (given in Table 2) is those
proposed by Maria [4], based on the reaction pathway presented in Fig.4 with the
rate expressions given in Figs. 5-7. How glycolytic oscillations occur is shortly
explained in section 3.

Aiming to maximize TRP production, by modulating the glycolysis
characteristics by which TRP synthesis is closely connected through the PEP
node (Fig.9), a TRP synthesis kinetic model it is also necessary.

Based on a simplified TRP synthesis pathway given in Fig. 9 and extended
studies reviewed by [2,3,5,7], Bhartiya et al.[6] proposed a simplified kinetic
model for the TRP synthesis given in the Table 4.
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Fig. 3. Glycolysis and carbohydrate metabolism (CCM) model in E.coli of [9].

However, this adopted TRP model [6] (Table 1) suffered two
modifications to match with the Bhartiya [6] experimental data, as suggested by
Maria et al. [7]: I) The rate constant K4 was re-estimated in order to fit the
experimental curves of [6], that is the OR, mMRNA, T, E species trajectories given
in Figure 9 (stationary [PEP]s = 1 mM case), by using a classic estimator [7] and,
I) To be connected to the glycolysis pathway (as displayed in Fig. 9), the TRP
synthesis kinetic model of Table 4, was completed with terms accounting for the
connection with the glycolysis through PEP node, PEP being explicitly included
in the TRP synthesis rate (see the dcT /dt term in Table 4; the nitrogen source in
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the TRP balance is considered in excess and included in the kg4 )[2-7]. Parameter
estimation has been done by using the effective MMA of Maria [16].

glelex)
pep nadp

model _reduction (13dpg)
_ Mode’ reduction ,
T

Oscillatory
Glycolysis
models

+ CCM .
* Phosphotranspherase (PTS) 48 reactions | Maria (2014) mode|

system for GLC import - M| 6 reactions
18 species 4 9 species

* Pentose phosphate pathway 127
arameters
* Glycolysis B 19 parameters

* Krebs cycle

Fig. 4. A comparison of the glycolysis models of [10], and of [4]. The last one
allows simulating glycolytic oscillations.

3. How glycolytic oscillations occur and simulation of some oscillation
conditions

How glycolytic oscillations occur? Oscillations in chemical systems
represent periodic state variable (i.e. species concentrations) transitions in time.
According to Franck [12], spontaneous occurrence of self-sustained oscillations in
chemical systems is due the coupled actions of at least two simultaneous
processes. Oscillations sourced in a so-called “oscillation node” (that is a
chemical species, or a reaction), on which concomitant rapid positive (perturbing)
and slow negative (recovering) regulatory loops act. Because the coupling action
between the simultaneous processes is mutual, the total coupling effect actually
forms closed feedback loops for each kinetic variable involved. There exists a
well-established set of essential thermodynamic and kinetics prerequisites for the
occurrence of spontaneous oscillations [12].
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Fig. 5. Explanation of the regulatory loops simultaneously acting on the reaction V2, that produce
glycolytic oscillations [3-5].
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Fig. 6. The differential mass balance of the glycolysis kinetic model [4].
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Glycolysis model: V1-V6 rate expressions
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Fig. 8. Some oscillation domains of the glycolysis in E. coli in-silico simulated by using Maria [4]
model. Suggestions to design GMO to modulate glycolytic oscillations [2,3,5]).

In the glycolysis case, as revealed by Termonia and Ross [13-15], glycolytic
oscillations occurrence is due to the antagonistic action of two processes on
regulating the V2 reaction rate that converts F6P in FDP (see reaction scheme in
the Figs. 4-6). The glycolytic oscillation occurrence and characteristics (period,
amplitude) are influenced by both external (environmental) and internal
(genomic) factors [3, 4].
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4. Bioreactor and cellular bioprocess structured model coupling glycolysis
and TRP (tryptophan) synthesis in the E. coli cell

By adopting the glycolysis kinetic model of Maria [4], one can determine,
by repeated simulations, the cell external and internal conditions leading to
glycolytic oscillation occurrence, and conditions determining TRP synthesis
maximization. In simulations, one considers the E. coli cell growing conditions of
the semi-continuous bioreactor of Chassagnole et al. [10], given in Table 1 by
using sparking air in excess, and necessary nutrients (for a cell culture
equilibrated growth). The main mass balance equations of the bioreactor and
glycolysis dynamic model are presented in Tables 2-3. To obtain the model
solution with enough precision, a low-order stiff integrator (“ODE23S” routine)
of the Matlab™ package was used.

Table 1
Nominal operating conditions of the tested semi-batch bioreactor (SBR) [2].

Parameter Nominal value Obs.

Biomass concentration (Cx) 8.7 gDWL* culture volume adopted

Cell content dilution rate () 0.278 x 10~* — 1.667 x 10~* min? (adjusted to be To be optimized
identical to D)

Culture dilution rate, D=F./Vi 0.278 x 10~* — 1.667 x 10> min~? (adjusted to be To be optimized
identical to )

Glucose feeding solution concentration C’f.:f 100-200, mM 200400, mM (this paper).

Initial glucose concentration in the bioreactor 0.0557, mM (stationary value of Chassagnole et al,, 1-5mM (this paper)

C (t=0) 2002)
Biomass density (px) 565.5 gDW (L cytosel)? 565.5 gDW (L cytosel)—?
Measured [AMDTP]total 5.82 (mM) 5.82 (mM)

5. Simulation results

Simulations were made for the cell culture conditions given in Table 1,
and for cells with [AMDTP]total = 5.82 mM.[3] Following the discussion in the
previous chapter on oscillations occurrence, the influence of two main factors is
studied here, that is:

)] [Glc]ext (related to the bioreactor operating conditions);

i) ke reaction rate (determined by the ATP-ase characteristics, related

to the cell phenotype),

iii) all other reaction rate constants, and [AMDTP] level were kept

unchanged during simulations of values given in Tables 2-3.
Simulations were conducted in an exhaustive way, by covering the ranges of the
initial [Glc]ext = [0.01-1] mM (at t = 0), and ke = [0.1-20] 1/min. The results are
plotted in Fig. 8. These simulation results lead to several model-based conclusions:
I) Oscillations are basically determined by the external level of [Glc] (triggering
the glucose import into the cell) but also, for a certain [AMDTP], total energy

37




Marina Mihalachi, Gheorghe Maria, Luminita Cristiana Gijiu

resources level in the cell (assumed to be quasi-constant in the present case
study), are determined by the ATP to ADP conversion rate, and ATP

regeneration rate (reflected here by ks, and K constants of Table 2).

Table 2.
The glycolysis kinetic model of Maria [4] and its parameters.
Reaction Parameters
GLC+ PEP — F6P + FYR
PYR+ ATP — PEP + ADP +H Coep = Repgo;

GLC+ATP —+ F6P + ADP + H
e cpEp YR

Vi=rm=£-

npw GEP
5 : PIP g + oot per ) [ g, Ceep
(Rers an +Errs a2 Tk +Hers, B+ ) (1B

FEP + ATP — FDP + ADP + H
vy "2.7::'&_,

(s [ 2| ()0

Vi=rem=

FDF + 2ZADP(+2NAD + 2F) «» ZPEF + ZATP(+2ZNADH + 2H + 2H20)
V3 = kacf, — kaptchy

PEF + ADF + H— PYE + ATF
1‘-4.r .

TOF
( P ﬁ‘r‘,_a ¥ rDP e.-_F)

Ve=Tm =

PYR —+ products (ACCOA, CIT, SUCC, LAC, ETOH, AC, ..)
k;::PEZ"“"- FYR

A S—
- consum,FYR +FYR

ATP— ADP+H
Ve =kscate

Obs.: kg takes values according to the micro-organism phenotype (characteristics of the
gene encoding the enzyme ATPase that catalyse this reaction).

2ADP 4 ATF + AMP

camrCane = Kchpp

Obs.: Termonia and Ross (1981a, 1981b, 1982) indicated experimental evidence of a very
fast reversible reaction catalysed by AKase, the equilibrium being quickly reached.

rger —308.8587

Kers.o1 = 10260
Kprsz2 = 3740.091
Kersa1=5911.072
Kprs,cen = absent
fprs cee =0

k=58

4=1.0437

Vim =0.062028

Kom =6.16423
EAMP =25 pM
EATF — 60 pM
ks = 73.63477
kap = 337.0371
=005

=3
¥=1.33188

m=4

Vim=0.13336

Kam =1.14644

KEPF = 0.2 Mm

1@ T =9.3mM

k: 603.3544

K consum pyr = 395.525
Meonsum Py = 2.68139

ks =12

(can vary in the range of
0.1-4000)

I1) Oscillations occur for low [Glc]ext but with a slow Glc import, due
relatively low ke constant values (i.e., a cell with a slow ATP conversion to

ADP and ATP recovery);

to

[11) By contrast, high levels of [Glc]ext, triggering high rate import, also produce

glycolytic oscillations for larger values of ks, due to the limited ATP recovery

rate (ke being also related to the K constant governing the AMDTP pathway).
Eventually, for too small, or too large ks values, the glycolysis reaches its

steady-state.
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Table 3

The dynamic model of the semi-continuous bioreactor of Maria et al. [2] and its parameters
(A) Species mass balance (glycolysis) Auxiliary relationships, and parameters of Maria (2014), Maria et al. (2018a).

de=t,

S5 gt - e - =

%=V1—V?—p,c;5? . . . : —

dgt i) Cell species initial concentrations are those measured by Chassagnole et al. (2002),

% =Va —V3 — pcrme that is (in mM):

df;:& =Va—Vs—p cpym

et (t = 0)=0.0557 mM [reference value of Chassagnole et al. (2002), or 1-5 mM (this

paper]]

crga(t = 0)=0.600325977,

crrs(t = 0)=0.272961814,

epez(t = 0)=2.67294507

covn(t = 0)= 2.67061526

carplt = 0)=4.27

1i) Capp + Canp + Cate = Campre = constant (Termonia and Ross, 1981a, 1981k, 1982);
—a—‘“-“-:"' =-V1-V3+2V3+Va— Ve —pcamr iif) caperesults from solving the thermodynamic equilibrium relationship

Carpane = Kk, thatis: e, EA"TF + €app — Canorp + Carp =0

iv) Products formation from PYR has been neglected in the model;

v) Biomass concentration (C,) is assumed to be quasi-constant.

vi) D= bioreactor dilution.; i = cell content dilution rate.
"_‘:a"i =2V3 -V — pCom —¥ep(2Va) Completion with terms accounting for the PEP consumption in the TRP synthesis:

Vi = "B pep = 1/43.63 (at QSS), from(Stephanopoulos and Simpson, 1997).

Table 4
TRP synthesis kinetic model [6] coupled with the glycolysis kinetic model [4] through PEP
node [2,5].
(B) Species mass balance (TRP synthesis) Parameters (Bhartiya et al., 2006)
dc% = k1orC1(T) — ka1 Cor — kCor
C:;]:NA =kzcorC2(T) — Ryg Curiva — L CMRNA
dez Initial values:
a =ka CumNa — 1 CE
i—? = kaCpepCa(T) g — %TKQ —pcr
(the PEP term in the right side is accounting for the cop(t=0)=0.01, pM

connection of TRP synthesis with the glycolysis)
cumna(t=0)=0.01, pM
e (t=0)=kacumna o/, pM
cr (t=0)=0.01, pM
k1 =50, 1/min.; cor =3.32; nM

K{r.“j X kg1 =0.5, 1/min.;
G = g ks =0.050; 1/min (Maria et al. (2018a)
" K?Zn §=25, pM/min; K; =0.2, pM
i i .
&M=, mn k2 =15, 1/min; kyp =15, min
iz K ,=3.53, uM; K, =0.04, uM
1 LK
G(M =z iz K, =810, uM; ng=1.92
i3

p=Cell content dilution rate.

Obs. The nitrogen source in the TRP synthesis is considered in excess and included in the k,; constant. To be connected to the glycolysis kinetic
model, the PEP concentration kinetic trajectory generated by the glycolysis model was explicitly included in the TRP synthesis rate.
Notations: OR=the complex between O and R (aporepressor of the TRP gene); OT = total TRP operon; MRNA = tryptophan mRNA during its
encoding gene dynamic transcription, and translation; E =enzyme anthranilate synthase; T =TRP = tryptophan.

IV) By contrast, high levels of [Glc]ext, triggering high rate import, also produce
glycolytic oscillations for larger values of ks, due to the limited ATP recovery
rate (ke being also related to the K constant governing the AMDTP pathway).
Eventually, for too small, or too large ks values, the glycolysis reaches its
steady-state.
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V) The glycolytic oscillation domains in Fig. 8, plotted in terms of ks and
[Glc]ext, are very narrow, revealing their high sensitivity with respect to the
inducing factors, and their poor stability. As expected, such a result indicates
that oscillations stability is also dependent on the micro-organism
characteristics. For instance, by contrast, the glycolytic oscillations in yeast
have been proved [3] to be very robust even in the presence of environmental
noise, “oscillations being a side-effect of the trade-offs between robustness and
regulatory efficiency of the feedback control of the auto-catalytic reaction
network™.

Simulation of the bioreactor dynamics with including coupled glycolysis and TRP

kinetics models, revealed several conclusions relevant for TRP production

maximization [2]:

I) The glucose initial concentration in the bioreactor, and its concentration in the
feeding solution do not influence quantitatively the bioreactor performances (see
Fig. 10);

I On the contrary, the TRP production is strongly influenced by the
bioreactor dilution. The maximum TRP production reaches the value of 0.47
(micro-M/min) for certain operating conditions ([GLC]o = 1 mM; dilution rate
of 0.0003097 1/min) with quickly amortized oscillations (QAO) for glycolysis,
and quasi-steady-state (QSS) regime for TRP synthesis (see Fig. 11)[2].

1)  The bioreactor dilution (adjusted to be the same with the cell dilution rate)
strongly influences the QSS / OSC (stable oscillations) regime of the cell
bioprocess.

IV)  Inall cases, it is worth noting the firm evolution of the glucose level in the
bulk-phase toward its steady-state (Fig. 10).

V) For the all set points investigated here and by [2], it is to remark the strong
influence of the dilution (i.e. bioreactor dilution taken equal to the cell dilution)
on the oscillatory behavior of the two cell sub-processes. While the glycolytic
species present stationary or amortized oscillations, the TRP synthesis
oscillations are very stable, even if of small amplitude, tending to QSS under
some glycolytic/bioreactor conditions.

VI)  Of course, other variables, not accounted in the model (cell characteristics
reflected in the model constants) can influence the location of the problem
solution. Subsequent experimental checks can validate this problem solution
and, eventually, in the case of inconsistencies, they will lead to the model
updating/completions for correcting its adequacy in order to perform futures
bioreactor optimization analyses.
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inlet concentrations of glucose in the chemostat [2,3,5].
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Fig. 11. In-silico determination of the optimal set-point (bioreactor and cell dilution) leading to
maximization of the tryptophan synthesis [2,3,5].

6. Conclusions

The use of reduced kinetic models when modelling complex metabolic
pathways is a continuous challenging subject when developing structured cell
simulators for various applications (flux analysis, target metabolite synthesis
optimization, in-silico re-programming of the cell metabolism and design of new
micro-organisms, bioreactor / bioprocess optimization)[1]. As exemplified by the
present case study, concerning E. coli glycolysis influence on the TRP synthesis,
reduced kinetic models, of simple and easily adaptable structure to various cell
cultures, can successfully be used for quick analyses of cell metabolism, such as
the substrate utilization, oscillation occurrence, or structured interpretation of
metabolic changes in modified cells.

The obtained results in the present paper prove, in a simple, but eloguent
way that, beside cell phenotype characteristics (determinant for the TRP operon
expression, and for the ATP regeneration engine), glycolysis is one of the major
factors determining the TRP synthesis efficiency, and TRP maximization. So, to
maximize the cell TRP production, glycolysis should be modulated to increase its
speed.

This paper also proves in a relatively simple, yet eloquent way, how a
lumped, but enough detailed and adequate dynamic model of essential cell
metabolic processes (CCM) can support in silico engineering evaluations, if the
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cell nano-scale metabolism (including metabolic by-products) will be somehow
reflected by the bioreactor macro-scale dynamic model [2,3,7].
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Abbreviations and notations

13DPG,
PGP

2PG

3PG

AC

AA
ACCOA
AK-ase

AMDTP
ADP

AMP

ATP

ATP-ase
CCM
CIT
CHR
DAHP

DHAP
DW
E
ETOH
F6P

FAD

. Glc,
1,3-diphosphoglycerate GLC
GLCex,
2-phosphoglycerate GLC(ex)
3-phosphoglycerate GLN
acetate GRC
amino-acid H
acetyl-coenzyme A HK-ase
adenylate kinase LAC
adenosin-
(mono)(di)(tri)phosphate MAL
lump
adenosin-diphosphate mM
adenosin-monophosphate MRNA
adenosin-triphosphate NAHD (P)
ATP monophosphatase @)
central carbon metabolism OR
citrate oT
chorismat P, Pi
3-Deoxy-D-arabino-
heptulosonic acid 7- PEP
phosphate
dihydroxyacetonephosphate PFK-ase
dry-weight PK-ase
enzyme anthranilate synthase Phe
ethanol PPP
fructose-6-phosphate PPH
Flavin adenine dinucleotide PTS
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glucose

Glucose in the environment

glutamine

genetic regulatory circuits
Hydrogen radical
hexokinase

lactate

malate

Milli-molar

tryptophan mRNA during its
encoding gene dynamic
transcription, and translation

nicotinamide adenine
dinucleotide (phosphate)
reduced

TRP active gene

the complex between O and R
(aporepressor of the TRP gene)
total TRP operon

Phosphoric acid

phosphoenolpyruvate

phosphofructokinase

pyruvate kinase
Phenylalanine
pentose-phosphate pathway
prephenate
phosphotransferase, or
phosphoenolpyruvate: glucose
phosphotransferase system
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semiquinone form of the
FADH reduced FAD PYR pyruvate
hydroguinone form of the .
FADH2 reduced EAD QSS quasi-steady-state
FDP fructose-1,6-biphosphate R aporepressor of the TRP gene
SUCC, .
FOR formate suC succinate
G3P, GAP  glyceraldehyde-3-phosphate TCA  tricarboxylic acid cycle
G6P glucose-6-phosphate TF transcription factors
GKase glucokinase T, TRP  tryptophan
GERM gene expression regulatory Tyr Tyrosine
module X5P Xylulose 5-phosphate
Cj species j concentration Indices O =initial; syn= synthesis
D cell content dilution rate Index s  Stationary (quasi-steady-state)
K i, K j rate constants ytrp stoichiometric coeff.
t tc Time, Cell cycle Sup_er- n = reaction order
: script
QAO quickly amortized oscillations OSC  stable oscillations
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